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Recent trends in tropical precipitation linked to 
organization

Change in monthly mean precipitation (1998 to 2009)

Contribution from changes in frequency of organized deep convection 

Contribution from other convective regimes

[Tan et al, Nature 2015]

Mesoscale Convective System



Larger
domain

Clouds over near-surface temperature in cloud-resolving model SAM

Self-aggregation of deep convection

Self Aggregation = Instability of disorganized Radiative-Convective Equilibrium “pop 
corn” state

« pop corn » 
convection

Self-aggregates

[Bretherton, Blossey, Khairoutdinov, 2005; Sobel, Bellon, Bacmeister 2007; Muller, Held 2012; Emanuel, Wing, Vincent 2013; Wing 
Emanuel 2013; Jeevanjee Romps 2013; Khairoutdinov Emanuel, 2013; Shi Bretherton 2014; Tobin, Bony, Roca, 2012; Tobin et al, 
2013; Muller Bony 2015; Arnolad Randall 2015; Coppin Bony 2015; Mapes 2016; Holloway Woolnough 2016; Tompkins Semie 2017; 
Wing Holloway Emanuel Muller 2017; Becker Bretherton Hohenegger Stevens 2018; Yang 2018; Muller Romps 2018 …]

• SAM [Khairoutdinov & Randall 03]
• SST=300K uniform

• No Coriolis (f=0)
• Doubly periodic

• No large-scale forcing
• In RCE



Question addressed

How does convective self-aggregation impact 
precipitation extremes?
Why?
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How does convective self-aggregation impact 
precipitation extremes?
Why?

How does convective self-aggregation change with
warming?

Question addressed



Self-aggregation

[Muller & Held, JAS 2012]

Variance of precipitable water (mm) 
in simulations

- Overall drying
- Overall warming (warmer

moist adiabat)

Domain mean profiles

Pop-corn

Self-aggregate

Self-aggregation leads to enhanced moisture
variability (moister moist region, drier dry region)



Þ increased instantaneous precipitation extremes (even more when time-accumulate)

3-hourly precip extremes

Precipitation extremes with self-aggregation
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consistent with [Bao Sherwood 2019]



Precipitation extremes with self-aggregation

~ + 20% increase

Þ + 20% increase of instantaneous precip extremes
(large variability with aggregation)

Why 20%?



Theoretical scaling for precipitation extremes

[Muller Takayabu 2019]
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Theoretical scaling for precipitation extremes

Condensation rate -15%

Thermodynamic + 5%

Dynamic -20%

-20% +5%

-15%
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Theoretical scaling for precipitation extremes

Thermodynamic contribution linked
to boundary layer water vapor

Increase due to moister near-cloud 
boundary layer

Positive but small contribution

Boundary layer water vapor increase with aggregation (~ +10%)

[Muller 2013]
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Theoretical scaling for precipitation extremes

Decrease in CAPE with aggregation (- 40%)

Moister near-cloud conditions 
Þ less entrainement effect
Þ Atmosphere closer to undilute

temperature profile

Negative dynamic contribution 
consistent with decreased CAPE

-15%
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Theoretical scaling for precipitation extremes

Precip efficiency +35%

+35% -15%
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Theoretical scaling for precipitation extremes

Efficiency ε=α(1-β) [Lutsko Cronin 2018]

Cloud condensate qn precipitating condensate qp surface precipitation
conversion α 1 - rain evaporation β

+7% (∫ qp / ∫ qn) +25% (Prsfc / Prmax)

Þ Reduced rain evaporation with aggregation dominates

- Due to moister conditions, and 
- Faster terminal velocities from warmer temperatures (more rain less snow; no 

change in graupel) 

+35% -15%

- ∂qsat
∂z

δP ~   δ εp ∫   ρw dz

ThermodynamicDynamic

Precip efficiency Condensation

+20%

-20% +5%



Conclusions
• Self-aggregation yields increased precipitation extremes

• Thermodynamic contribution positive but small
Due to moister near-cloud boundary layer

• Dynamic contribution negative
Due to decreased entrainment effects, thus decreased CAPE

• Precip efficiency contribution positive and largest
Dominated by reduced evaporation of rain, from moister and 
warmer conditions (latter => faster terminal velocities)

The contribution from organized convection to precip extremes
is important (compare to 7%/K increase in « pop corn » 
convection » 

[Da Silva, Shamekh, Muller 2019 (in prep.)]


